Empirical likelihood based confidence intervals for copulas

نویسندگان

  • Jian Chen
  • Liang Peng
  • Yichuan Zhao
چکیده

Copula as an effective way of modeling dependence has become more or less a standard tool in risk management, and a wide range of applications of copula models appear in the literature of economics, econometrics, insurance, finance, etc. How to estimate and test a copula plays an important role in practice, and both parametric and nonparametric methods have been studied in the literature. In this paper, we focus on interval estimation and propose an empirical likelihood based confidence interval for a copula. A simulation study and a real data analysis are conducted to compare the finite sample behavior of the proposed empirical likelihood method with the bootstrap method based on either the empirical copula estimator or the kernel smoothing copula estimator. © 2008 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jackknife empirical likelihood method for copulas

Copulas are used to depict dependence among several random variables. Both parametric and non-parametric estimation methods have been studied in the literature. Moreover, profile empirical likelihood methods based on either empirical copula estimation or smoothed copula estimation have been proposed to construct confidence intervals of a copula. In this paper, a jackknife empirical likelihood m...

متن کامل

Smoothed jackknife empirical likelihood method for tail copulas

In this paper we propose a smoothed jackknife empirical likelihood method to construct confidence intervals for tail copulas or tail dependence functions for bivariate extremes. By applying the standard empirical likelihood method for a mean to the smoothed jackknife sample, the empirical likelihood ratio statistic can be calculated by simply solving a single equation. Therefore, this procedure...

متن کامل

Bayesian inference for multivariate copulas using pair-copula constructions

This article provides a Bayesian analysis of pair-copula constructions (Aas et al., 2007 Insurance Math. Econom.) for modeling multivariate dependence structures. These constructions are based on bivariate t−copulas as building blocks and can model the nature of extremal events in bivariate margins individually. According to recent empirical studies (Fischer et al. (2007) and Berg and Aas (2007...

متن کامل

Semi-Empirical Likelihood Confidence Intervals for the ROC Curve with Missing Data

The receiver operating characteristic (ROC) curve is one of the most commonly used methods to compare the diagnostic performances of two or more laboratory or diagnostic tests. In this thesis, we propose semi-empirical likelihood based confidence intervals for ROC curves of two populations, where one population is parametric while the other one is non-parametric and both populations have missin...

متن کامل

Interval estimation for bivariate t-copulas via Kendall’s tau

Copula models have been popular in risk management. Due to the properties of asymptotic dependence and easy simulation, the t-copula has often been employed in practice. A computationally simple estimation procedure for the t-copula is to first estimate the linear correlation via Kendall’s tau estimator and then to estimate the parameter of the number of degrees of freedom by maximizing the pse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2009